Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 221(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38597952

RESUMO

Epithelium-derived cytokines or alarmins, such as interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP), are major players in type 2 immunity and asthma. Here, we demonstrate that TNF-like ligand 1A (TL1A) is an epithelial alarmin, constitutively expressed in alveolar epithelium at steady state in both mice and humans, which cooperates with IL-33 for early induction of IL-9high ILC2s during the initiation of allergic airway inflammation. Upon synergistic activation by IL-33 and TL1A, lung ILC2s acquire a transient IL-9highGATA3low "ILC9" phenotype and produce prodigious amounts of IL-9. A combination of large-scale proteomic analyses, lung intravital microscopy, and adoptive transfer of ILC9 cells revealed that high IL-9 expression distinguishes a multicytokine-producing state-of-activated ILC2s with an increased capacity to initiate IL-5-dependent allergic airway inflammation. Similar to IL-33 and TSLP, TL1A is expressed in airway basal cells in healthy and asthmatic human lungs. Together, these results indicate that TL1A is an epithelium-derived cytokine and an important cofactor of IL-33 in the airways.


Assuntos
Asma , Interleucina-33 , Animais , Humanos , Camundongos , Alarminas , Citocinas , Imunidade Inata , Inflamação , Interleucina-9 , Linfócitos , Proteômica
2.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834705

RESUMO

In early 2020, the novel pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, and rapidly propagated worldwide causing a global health emergency. SARS-CoV-2 binds to the angiotensin-converting enzyme 2 (ACE2) protein for cell entry, followed by proteolytic cleavage of the Spike (S) protein by the transmembrane serine protease 2 (TMPRSS2), allowing fusion of the viral and cellular membranes. Interestingly, TMPRSS2 is a key regulator in prostate cancer (PCa) progression which is regulated by androgen receptor (AR) signaling. Our hypothesis is that the AR signaling may regulate the expression of TMPRSS2 in human respiratory cells and thus influence the membrane fusion entry pathway of SARS-CoV-2. We show here that TMPRSS2 and AR are expressed in Calu-3 lung cells. In this cell line, TMPRSS2 expression is regulated by androgens. Finally, pre-treatment with anti-androgen drugs such as apalutamide significantly reduced SARS-CoV-2 entry and infection in Calu-3 lung cells but also in primary human nasal epithelial cells. Altogether, these data provide strong evidence to support the use of apalutamide as a treatment option for the PCa population vulnerable to severe COVID-19.


Assuntos
COVID-19 , Masculino , Humanos , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Peptidil Dipeptidase A/metabolismo , Pulmão/metabolismo , Células Epiteliais/metabolismo , Internalização do Vírus
3.
Nat Immunol ; 19(4): 375-385, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29556000

RESUMO

Allergic inflammation has crucial roles in allergic diseases such as asthma. It is therefore important to understand why and how the immune system responds to allergens. Here we found that full-length interleukin 33 (IL-33FL), an alarmin cytokine with critical roles in type 2 immunity and asthma, functioned as a protease sensor that detected proteolytic activities associated with various environmental allergens across four kingdoms, including fungi, house dust mites, bacteria and pollens. When exposed to allergen proteases, IL-33FL was rapidly cleaved in its central 'sensor' domain, which led to activation of the production of type 2 cytokines in group 2 innate lymphoid cells. Preventing cleavage of IL-33FL reduced allergic airway inflammation. Our findings reveal a molecular mechanism for the rapid induction of allergic type 2 inflammation following allergen exposure, with important implications for allergic diseases.


Assuntos
Alérgenos/imunologia , Hipersensibilidade/imunologia , Inflamação/imunologia , Interleucina-33/imunologia , Animais , Humanos , Hipersensibilidade/metabolismo , Inflamação/metabolismo , Interleucina-33/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteólise
4.
Bio Protoc ; 8(19): e3032, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34532511

RESUMO

Group 2 Innate Lymphoid Cells (ILC2) play an important role in immune responses at barrier surfaces, notably in the lung during airway allergic inflammation or asthma. Several studies have described methods to isolate ILC2s from wild-type naive mice, most of them using cell sorting to obtain a pure population. Here, we describe in detail, a simple, efficient method for isolation and culture of lung mouse ILC2s. Lungs from Rag2-/- mice pretreated with IL-33 are collected and processed into single cell suspensions. Lymphoid cells are then recovered by density gradient separation. Lin-CD45+ cells are selected by depletion of lineage positive cells followed by positive selection of CD45+ cells. Culture of the isolated cells for several days results in a highly purified ILC2 population expressing typical cell surface markers (CD90.2, Sca1, CD25, CD127, and IL-33R). These cells can be expanded in culture for up to 10 days and used for diverse ex vivo assays or in vivo adoptive transfer experiments.

5.
Front Immunol ; 8: 98, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28228759

RESUMO

Dendritic cells (DCs) play a central role in shaping immunogenic as well as tolerogenic adaptive immune responses and thereby dictate the outcome of adaptive immunity. Here, we report the generation of a CD8α+ DC line constitutively secreting the tolerogenic cytokine interleukin (IL)-35. IL-35 secretion led to impaired CD4+ and CD8+ T lymphocyte proliferation and interfered with their function in vitro and also in vivo. IL-35 was furthermore found to induce a tolerogenic phenotype on CD8α+ DCs, characterized by the upregulation of CD11b, downregulation of MHC class II, a reduced costimulatory potential as well as production of the immunomodulatory molecule IL-10. Vaccination of mice with IL-35-expressing DCs promoted tumor growth and reduced the severity of autoimmune encephalitis not only in a preventive but also after induction of encephalitogenic T cells. The reduction in experimental autoimmune encephalitis severity was significantly more pronounced when antigen-pulsed IL-35+ DCs were used. These findings suggest a new, indirect effector mechanism by which IL-35-responding antigen-presenting cells contribute to immune tolerance. Furthermore, IL-35-transfected DCs may be a promising approach for immunotherapy in the context of autoimmune diseases.

6.
Proc Natl Acad Sci U S A ; 111(43): 15502-7, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25313073

RESUMO

Interleukin-33 (IL-33) is an alarmin cytokine from the IL-1 family. IL-33 activates many immune cell types expressing the interleukin 1 receptor-like 1 (IL1RL1) receptor ST2, including group-2 innate lymphoid cells (ILC2s, natural helper cells, nuocytes), the major producers of IL-5 and IL-13 during type-2 innate immune responses and allergic airway inflammation. IL-33 is likely to play a critical role in asthma because the IL33 and ST2/IL1RL1 genes have been reproducibly identified as major susceptibility loci in large-scale genome-wide association studies. A better understanding of the mechanisms regulating IL-33 activity is thus urgently needed. Here, we investigated the role of mast cells, critical effector cells in allergic disorders, known to interact with ILC2s in vivo. We found that serine proteases secreted by activated mast cells (chymase and tryptase) generate mature forms of IL-33 with potent activity on ILC2s. The major forms produced by mast cell proteases, IL-33(95-270), IL-33(107-270), and IL-33(109-270), were 30-fold more potent than full-length human IL-33(1-270) for activation of ILC2s ex vivo. They induced a strong expansion of ILC2s and eosinophils in vivo, associated with elevated concentrations of IL-5 and IL-13. Murine IL-33 is also cleaved by mast cell tryptase, and a tryptase inhibitor reduced IL-33-dependent allergic airway inflammation in vivo. Our study identifies the central cleavage/activation domain of IL-33 (amino acids 66-111) as an important functional domain of the protein and suggests that interference with IL-33 cleavage and activation by mast cell and other inflammatory proteases could be useful to reduce IL-33-mediated responses in allergic asthma and other inflammatory diseases.


Assuntos
Imunidade Inata/imunologia , Interleucinas/química , Interleucinas/metabolismo , Linfócitos/imunologia , Mastócitos/enzimologia , Peptídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Inflamação/imunologia , Inflamação/patologia , Interleucina-33 , Pulmão/imunologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Peso Molecular , Mutação Puntual/genética , Estrutura Terciária de Proteína , Deleção de Sequência/genética
7.
Front Immunol ; 5: 338, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25101081

RESUMO

Our newly generated murine tumor dendritic cell (MuTuDC) lines, generated from tumors developing in transgenic mice expressing the simian virus 40 large T antigen (SV40LgT) and GFP under the DC specific promoter CD11c, reproduce the phenotypic and functional properties of splenic wild type CD8α(+) conventional DCs. They have an immature phenotype with low co-stimulation molecule expression (CD40, CD70, CD80, and CD86) that is upregulated after activation with toll-like receptor ligands. We observed that after transfer into syngeneic C57BL/6 mice, MuTuDC lines were quickly rejected. Tumors grew efficiently in large T transgene-tolerant mice. To investigate the immune response toward the large T antigen that leads to rejection of the MuTuDC lines, they were genetically engineered by lentiviral transduction to express luciferase and tested for the induction of DC tumors after adoptive transfer in various gene deficient recipient mice. Here, we document that the MuTuDC line was rejected in C57BL/6 mice by a CD4 T cell help-independent, perforin-mediated CD8 T cell response to the SV40LgT without pre-activation or co-injection of adjuvants. Using depleting anti-CD8ß antibodies, we were able to induce efficient tumor growth in C57BL/6 mice. These results are important for researchers who want to use the MuTuDC lines for in vivo studies.

8.
PLoS One ; 9(1): e86844, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489792

RESUMO

Immune responses against intestinal microbiota contribute to the pathogenesis of inflammatory bowel diseases (IBD) and involve CD4(+) T cells, which are activated by major histocompatibility complex class II (MHCII) molecules on antigen-presenting cells (APCs). However, it is largely unexplored how inflammation-induced MHCII expression by intestinal epithelial cells (IEC) affects CD4(+) T cell-mediated immunity or tolerance induction in vivo. Here, we investigated how epithelial MHCII expression is induced and how a deficiency in inducible epithelial MHCII expression alters susceptibility to colitis and the outcome of colon-specific immune responses. Colitis was induced in mice that lacked inducible expression of MHCII molecules on all nonhematopoietic cells, or specifically on IECs, by continuous infection with Helicobacter hepaticus and administration of interleukin (IL)-10 receptor-blocking antibodies (anti-IL10R mAb). To assess the role of interferon (IFN)-γ in inducing epithelial MHCII expression, the T cell adoptive transfer model of colitis was used. Abrogation of MHCII expression by nonhematopoietic cells or IECs induces colitis associated with increased colonic frequencies of innate immune cells and expression of proinflammatory cytokines. CD4(+) T-helper type (Th)1 cells - but not group 3 innate lymphoid cells (ILCs) or Th17 cells - are elevated, resulting in an unfavourably altered ratio between CD4(+) T cells and forkhead box P3 (FoxP3)(+) regulatory T (Treg) cells. IFN-γ produced mainly by CD4(+) T cells is required to upregulate MHCII expression by IECs. These results suggest that, in addition to its proinflammatory roles, IFN-γ exerts a critical anti-inflammatory function in the intestine which protects against colitis by inducing MHCII expression on IECs. This may explain the failure of anti-IFN-γ treatment to induce remission in IBD patients, despite the association of elevated IFN-γ and IBD.


Assuntos
Colite/imunologia , Colite/prevenção & controle , Enterócitos/metabolismo , Interferon gama/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Quimiocinas/metabolismo , Colite/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Enterócitos/efeitos dos fármacos , Enterócitos/patologia , Fatores de Transcrição Forkhead/metabolismo , Helicobacter/efeitos dos fármacos , Helicobacter/fisiologia , Infecções por Helicobacter/imunologia , Imunidade Inata/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Queratina-14/genética , Contagem de Linfócitos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Receptores de Interleucina-10/imunologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Transativadores/genética , Regulação para Cima/efeitos dos fármacos
9.
Front Immunol ; 3: 331, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23162549

RESUMO

Research in vitro facilitates discovery, screening, and pilot experiments, often preceding research in vivo. Several technical difficulties render Dendritic Cell (DC) research particularly challenging, including the low frequency of DC in vivo, thorough isolation requirements, and the vulnerability of DC ex vivo. Critically, there is not as yet a widely accepted human or murine DC line and in vitro systems of DC research are limited. In this study, we report the generation of new murine DC lines, named MutuDC, originating from cultures of splenic CD8α conventional DC (cDC) tumors. By direct comparison to normal WT splenic cDC subsets, we describe the phenotypic and functional features of the MutuDC lines and show that they have retained all the major features of their natural counterpart in vivo, the splenic CD8α cDC. These features include expression of surface markers Clec9A, DEC205, and CD24, positive response to TLR3 and TLR9 but not TLR7 stimuli, secretion of cytokines, and chemokines upon activation, as well as cross-presentation capacity. In addition to the close resemblance to normal splenic CD8α cDC, a major advantage is the ease of derivation and maintenance of the MutuDC lines, using standard culture medium and conditions, importantly without adding supplementary growth factors or maturation-inducing stimuli to the medium. Furthermore, genetically modified MutuDC lines have been successfully obtained either by lentiviral transduction or by culture of DC tumors originating from genetically modified mice. In view of the current lack of stable and functional DC lines, these novel murine DC lines have the potential to serve as an important auxiliary tool for DC research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...